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Motivation

• Accurate prediction of wave conditions

− Design of offshore and coastal structures 

(hindcast)

− Operations at sea (forecast)

• MIKE21SW + EnKF = better wave predictions?
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Research questions
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• Can we reduce model complexity and calibration work... 

and rely on data and EnKF instead? 

• Is EnKF necessary? 

or is a simpler data assimilation procedure sufficient? 
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Spectral wave modelling

with MIKE 21 SW
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MIKE 21 SW

• 3rd generation spectral 

wind-wave model 

• Unstructured mesh

• Finite volume

• Wave growth, decay and 

transformation
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MIKE FM
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DA in MIKE FM
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Data assimilation and the EnKF
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How to update the model? 
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Distance-based

But how about…

• Other variables

• Physical consistency



How to update the model? 
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Correlation-basedDistance-based



Combining two uncertain pieces of information
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model
observation

Analysis



Filtering
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Kalman filter

Optimal combination of 

• model (with errors) and 

• observations (with errrors)



But…

It only works for small, linear problems
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The Ensemble Kalman filter
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Ensemble models
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• Ensemble consisting of m members 

• Representing model uncertainty

#15



• Use ensemble

• Model error ≈ difference from mean

How to update the model? 
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Correlation-based update



Ensemble Kalman filter
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• Idea: Monte Carlo approximation to Kalman filter

• Approximate model uncertainty by samples (ensemble members)

Forecast

Analysis

Observation

Ensemble



© DHI

Ensemble modelling in MIKE FM
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DA in MIKE FM
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Ensemble models
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• Ensemble consisting of m members 

How to introduce variability in model?

• Add small “errors” (=pertubations) to…

− Initial conditions 

− Forcings

− Parameters

#20



Uncertainty modelling in MIKE FM
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• Amplitude (e.g. wind st.dev 1m/s)

• Time scales, AR(1)

• Spatial scales 

− Discretization (coarse)

− Covariance Q (e.g. 300 km)

• Vector ϵ

Discretized boundary uncertainty

Discretized wind uncertainty (part)
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State representation in MIKE FM
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• Model variables according to selected modules 

− State variables 𝑥𝑚𝑜𝑑𝑒𝑙 =(wl, u, v, …) 

• Model errors

− Types: open bc, wind-u, wind-v, …

− Discretized on a grid: ϵ

• Augmented state 

𝑥𝑠𝑡𝑎𝑡𝑒 =
𝑥𝑚𝑜𝑑𝑒𝑙

𝜖
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Data assimilation for MIKE 21 SW
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State representation
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• Action density!

• And… variables that we would like to assimilate 

− Hm0, Tp

• Model errors

#24



Creating the MIKE 21 SW ensemble
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• Forcings

− Wind velocity components

− Windspeed

• Parameters

− Whitecapping

− Bottom friction

• Boundary conditions (later)
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Case study
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Case Study: Dutch Coast Metocean Desk Study
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• DHI Project to provide meteorological and 

oceanographic (metocean) design conditions 

for the Dutch Coast wind Farm zone

• Based on numerical modelling over 39 years
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Case Study: MIKE 21 SW settings
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• Coarse-resolution edition of existing 

SW model setup

• CFSR wind

• Study period 2017

Model domain

Observations
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• Ensemble size: 10

• Perturbation of wind forcing:

− 1.5m/s additive error on 80km grid

• Assimilate significant wave height

• Assimilate every 10 minutes

Case Study: DA model
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Station F16 – no DA
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Station F16 – DA with 3 stations
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How about altimetry data?

#32



Forcings and model too good!?
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• ...or altimetry data (Sentinel 3A) too sparse

• Reduce accuracy in forcings 

− Let wind be biased 20% low

− Simplify boundary conditions 
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Time series of Hs at F16
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Time series of Hs at F16
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Time series of Hs at F16
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Station F16 – no DA, bad input
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Station F16 – DA Sentinel 3A, bad input
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Station F16 – DA with 3 stations, bad input
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What about estimation of wind?
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Time series of wind speed at F16
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Time series of wind speed at F16
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F16 wind speed – 80% CFSR (bad input)
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F16 wind speed – DA Sentinel 3A, bad input
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F16 wind speed – DA with 3 stations, bad input
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Concluding remarks
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Conclusion
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• EnKF succesfully implemented for MIKE 21 SW

• Demonstrated on real metocean case

− Station DA improved Hm0 RMSE 30%

− Altimetry DA didn’t help in this case

• Demonstrated on case with reduced-quality input (wind biased low)

− Altimetry DA improved Hm0 RMSE 20%

− Station DA improved Hm0 RMSE 57%

− Wind speeds improved by DA 

• It could be feasible to EnKF in stead of high-resolution model with good forcings

− Computation time (1yr simultion): 2hr on 20 cores (10 members)

− Original high-resolution model: 25hr on 72 cores
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Case study

• Parameter errors

• Testing of EnOI (static ensemble)

• Assess forecasting skill

• Assimilation of wind

Development

• Boundary forcing errors

• Ensemble Kalman Smoother (EnKS)  

Next steps
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Questions?
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Jesper Sandvig Mariegaard, DHI
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Error covariance
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Error covariance
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• Covariance of Hm0 with Hm0 in K14 during NW storm
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Error covariance
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